This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

SYNTHESIS AND ANTIOXIDATIVE ACTIVITY OF N-[(BENZOYLAMINO) THIOXOMETHYL]-GLYCINE COMPLEXES WITH RARE EARTH METALS

Ren Yan-ping^{ab}; Bai Jun-feng^a; Wang Liu-fang^a; Wu Ji-gui^a; Zhang Ying-nian^c ^a National Laboratory of Applied Organic Chemistry, Department of Chemistry, University, Lanzhou, P. R. C ^b Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan ^c Lanzhou Teacher's College, Lanzhou, P. R. C

To cite this Article Yan-ping, Ren , Jun-feng, Bai , Liu-fang, Wang , Ji-gui, Wu and Ying-nian, Zhang(1998) 'SYNTHESIS AND ANTIOXIDATIVE ACTIVITY OF N-[(BENZOYLAMINO) THIOXOMETHYL]-GLYCINE COMPLEXES WITH RARE EARTH METALS', Journal of Coordination Chemistry, 44: 1, 1 - 8To link to this Article: DOI: 10.1080/00958979808022874

URL: http://dx.doi.org/10.1080/00958979808022874

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord, Chem., 1998, Vol. 44, pp. 1-8 Reprints available directly from the publisher Photocopying permitted by license only © 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint Printed in Malaysia

NOTE

SYNTHESIS AND ANTIOXIDATIVE ACTIVITY OF N-[(BENZOYLAMINO) THIOXOMETHYL]-GLYCINE COMPLEXES WITH RARE EARTH METALS

REN YAN-PING^{a,*,†}, BAI JUN-FENG^a, WANG LIU-FANG^{a,*}, WU JI-GUI^a and ZHANG YING-NIAN^b

^aNational Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, 730000, P.R.C; ^bLanzhou Teacher's College, Lanzhou, 730050, P.R.C

(Received 2 June 1997; Revised 29 August 1997; In final form 24 September 1997)

Nine new solid complexes of N-[(benzoylamino) thioxomethyl]-glycine $(C_{4}H_{3} - \overset{W}{C} - NH - \overset{W}{C}$ -NH-CH₂COOH, HL) with rare earth metals (M) have been synthesized. Elemental analysis, IR, molar conductance, TG-DTA and ¹H NMR spectra have been used to characterize the complexes. The general formula of the complexes is ML₃·1.5CH₃OH (M = La, Ce, Nd, Sm, Gd, Dy, Er, Yb and Y). The antioxidative activity of La, Gd and Yb complexes was tested. The results obtained showed that the complexes possess scavenging effects on O₂⁻⁻⁻ radicals. It was also found that some complexes inhibit lipid peroxidation of homogenate of mouse liver.

Keywords: Antioxidative activity; rare earth metals; N-[(benzoylamino)thioxomethyl]glycine; complexes

INTRODUCTION

Complexes of thiourea and thiourea derivaties with transition and rare earth metals are receiving more and more attention. It is well known that these complexes have antitumor, antiviral, bacteriostatic and antioxidation activity.^{1,2}

^{*}Authors for correspondence.

[†]Present address: Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan, 030024

It was also reported that rare earth elements and their complexes with glycine have antitumor activity.^{3,4} There appear to be no reports of the complexes of N-[(benzoylamino)thioxomethyl]-glycine (HL). Therefore, we now report the synthesis and characterization of rare earth complexes with HL and discuss their antioxidative activity.

This paper is one of a series of our investigation of metal complexes with HL. Further studies on the complexes of first row transition elements with HL are in progress.

EXPERIMENTAL

Measurements

Carbon, hydrogen and nitrogen were determined using a Carlo-Erba 1106 elemental analyser. The metal content of the complexes were estimated by titration with EDTA. The IR spectra were recorded on a Nicolet-170SX FT-IR spectrophotometer using KBr discs in the range $4000-200 \text{ cm}^{-1}$. ¹H NMR spectra were obtained using a Varian FT-80A spectrometer with d_6 -acetone as the solvent and TMS as the internal reference. Thermal analyses were performed using a DuPont 1090 thermal analyser. Absorbances were determined on a 751-spectrophotometer at 532 and 560 nm.

Reagents

The chemicals used included rare earth (III) chlorides (MCl₃) which were obtained from the Reagent Factory of Shanghai; glycine (NH₂CH₂COOH); benzoyl chloride (C₆H₅COCl); ammonium sulfocyanate (NH₄SCN); nitroblue tetrazolium (NBT); trimethylaminomethane (IRIS); 2-thiobarbituric acid(TBA); L-methionine (MET); trichloroactetic acid (TCA) and riboflavine (VB₂) and all the reagents used are AR grade. All biochemical reagents were obtained from Sigma Chemical Company.

Synthesis of the Ligand $(C_6H_5 - C - NH - CH_2 - COOH, HL)$

An improved literature method⁵ was used. It has some advantages, such as more rapid reaction, nearly 75% yield, and being a one step reaction.

 $C_6H_5COCl(0.010 \text{ mol})$ was poured into a freshly prepared 0.011 mol NH₄SCN solution in acetone (20 cm³), and refluxed for 30 min. Then NH₂CH₂-COOH(0.010 mol) powder and acetone (20 cm³), were added as rapidly as possible to maintain vigorous reflux. After refluxing for 6 h, excess cracked ice

Compound	m. p. (°C)	С%	H%	N%	RE%	Molar conductancein DMF (S cm ² mol ⁻¹)
HL	200	50.61	4.12	11.84		
		(50.42)	(4.20)	(11.96)		
NaL		46.27	3.34	10.88		70.30
		(46.15)	(3.46)	(10.76)		
LaL ₃ ·1.5CH ₃ OH	193	41.95	3.75	9.28	15.32	8.70
		(42.10)	(3.68)	(9.35)	(15.47)	
CeL ₃ ·1.5CH ₃ OH	195	41.90	3.80	9.25	15.46	6.50
		(42.04)	(3.67)	(9.34)	(15.58)	
NdL ₃ ·1.5CH ₃ OH	196	41.86	3.70	9.26	15.85	6.76
		(41.85)	(3.65)	(9.30)	(15.96)	
SmL ₃ ·1.5CH ₃ OH	192	41.35	3.56	8.79	16.67	5.20
		(41.56)	(3.63)	(9.24)	(16.54)	
GdL ₃ ·1.5CH ₃ OH	208	41.09	3.64	9.20	17.20	5.55
		(41.25)	(3.60)	(9.17)	(17.16)	
DyL ₃ -1.5CH ₃ OH	190	40.89	3.62	9.24	17.56	4.85
		(41.02)	(3.58)	(9.12)	(17.63)	
ErL-1.5CH-OH	205	40.76	3.42	9.15	17.80	5.45
2 2		(40.81)	(3.56)	(9.07)	(18.06)	
YbL, 1.5CH, OH	210	40.30	3.62	8.80	18.74	4.98
		(40.54)	(3.53)	(9.01)	(18.56)	
YL ₃ ·1.5CH ₃ OH	198	44.10	3.92	9.60	10.62	4.70
-		(44.58)	(3.89)	(9.90)	(10.48)	

TABLE I Melting point, analyses and molar conductances for the complexes

Calculated values in parentheses

was poured into the mixture with vigorous stirring. The resulting solid was collected, liberally washed with water, and then acetone and recrystallized from ethanol (95%) to give pure product, yield, 7.5g (75%); m. p. 200-201°C (lit, m. p. 199-200°C).⁵

The purity of the ligand obtained was confirmed by elemental analysis (see Table I), IR spectra, ¹H NMR and mass spectra.

Synthesis of the Sodium Salt of the Ligand (NaL)

HL was dissolved with equimolar sodium hydroxide (NaOH) methanol solution. The mixture was stirred until clear, then the solution was put on a water bath to evaporate until a crystal film appears. The product obtained was collected by filtration and dried over molecular sieves under vacuum. The purity of the product was also confirmed by elemental analysis and IR spectra.

Synthesis of the Complexes

3 mmol HL and 3 mmol NaOH were dissolved in 20 cm³ methanol. Under stirring, a solution of MCl_3 (1 mmol) in methanol (20 cm³) was added to the mixture and the precipitate appeared immediately. After stirring the mixture at room temperature for 2 h, the precipitate was collected by filtration, washed with methanol three times, and dried in a vacuum dessicator to constant weight. Nine rare earth (III) complexes with HL were prepared by the same method.

Test for Scavenger Effects on O₂⁻⁻

The superoxide radicals (O_2^{--}) produced in the system VB₂/MET/NBT⁶ were measured by the amount of NBT reduced by O_2^{--} . The reaction mixture (3 cm³) contained VB₂ (18 µmol/l), MET (3 mmol/l), NBT (225 µmol/l), tri-HCl buffer (0.05 mol/l) (pH = 7.5) and the tested compound (30-500 µmol/l). The reaction was left for 30 min under a fluorescent lamp (40 W). The amount of reduced NBT was detected by the absorbance at 560 nm, since the reduced product, blue formazan, absorbs at this wavelength. The suppression ratio for O_2^{--} was calculated from the following expression:

suppression ratio =
$$100 \times \frac{A_0 - A}{A_0}$$

where A_0 = the absorbance in the absence of the ligand or its complexes and A = the absorbance in the presence of the ligand or its complexes.

The inhibiting activity for lipid peroxidation of homogenate of mouse liver by HL and its complexes were determined by the literature procedure.⁷ The little white mouse liver was quickly taken from the mouse body, washed to free it from residual blood in the physiological saline, then dried with filter paper: 5% homogenate of little white mouse liver was prepared with it. Then 1 cm³ 5% homogenate and 0.1 cm³ DMF solution (4.0 mg/cm³) of the ligand or its complexes were mixed together, the mixture was kept at 37°C for 1.5 h. 3.0 cm³ of 20% TCA and 0.67% TBA was added, and the mixture was kept at 95°C for 10 min. The absorbance of the final mixture was measured at 532nm. The inhibiting activity was calculated from the following expression:

Compound	v(OH) (CH ₃ OH)	v _{as} (COO [−])	v _s (COO ⁻)	Δν	v(RE-O)
NaL		1605	1404	201	
LaL ₃ ·1.5CH ₃ OH	3414	1588	1418	170	532
CeL ₃ ·1.5CH ₃ OH	3417	1585	1416	179	533
GdL ₃ ·1.5CH ₃ OH	3431	1579	1415	164	537
DyL 1.5CH OH	3430	1581	1414	167	536
YbL ₃ 1.5CH ₃ OH	3432	1576	1409	167	536

TABLE II Some characteristic IR data (cm⁻¹) and their assignments for the ligand and its typical complexes

suppression ratio =
$$100 \times \frac{A_0 - A}{A_0}$$

where the definitions of symbols (A_0, A) are the same as above.

RESULTS AND DISCUSSION

Composition and Properties of the Complexes

Elemental composition, molar conductance and molecular formula of the complexes are listed in Table I. The complexes are stable in air and soluble in DMF and DMSO, insoluble in water, methanol and ethanol. As seen in Table I, the molar conductances of the complexes in DMF vary from 4.7-8.6 S cm² mol⁻¹, indicating that they are nonelectrolytes.⁸

IR Spectra

The important IR data of the ligand and its typical complexes are listed in Table II. The infrared spectra of the complexes are fundamentally similar which reveals that they have the same general structure, but differ from the free ligand HL. The characteristic ν (C=O) mode of the ligand carboxyl group (1708 cm⁻¹) disappeared upon complexation. However, the complexes displayed both symmetric and asymmetric stretching vibrations of COO⁻ (1409-1418, 1567-1588 cm⁻¹), compared with 1605 [ν_{as} (COO⁻)], 1404 [ν_{s} (COO⁻)] cm⁻¹ of NaL, ν_{s} (COO⁻) of the complexes increased slightly while ν_{as} (COO⁻) decreased, that is $\Delta \nu$ [$\Delta \nu = \nu_{as}$ (COO⁻) – ν_{s} (COO⁻)] of the complexes is smaller than that of NaL which strongly suggests the coordination of the ligand carboxyl group with the M (III) ions as a bidentate chelate fashion.⁹ Further support for the existence of the M-O bond is the presence of a new band at about 535 cm⁻¹ due to ν (M-O). Other characteristic bands of ν (N-C-N), ν (C=S) and ν (C=O)

$$(R = CH_2 - NH - C - NH - C - C_6H_5, M = La, Ce, Nd, Sm, Gd, Dy, Er, Yb and Y)$$

(carbonyl group) vary less, showing that the N, S and O (carbonyl group) don't coordinate to the M (III) ions. The strong band of ν (OH) appears at 3414-3430 cm⁻¹ in the IR spectra of all the complexes, proving the existence of methanol in these complexes consistent with the results of the thermal analyses.

Based on the above discussion, the probable structures of the complexes are shown in Figure 1.

Thermal Analyses

The thermographs of all the complexes are quite similar, but all differ obviously from HL. All the complexes have one sharp endothermic peak around 60° C in the DTA curve, and the percent weight losses of the relevant thermograms correspond to the percent contents of methanol in these complexes. These results agree with the composition of the complexes determined by elemental analyses. The temperature corresponding to methanol loss indicates that the methanol molecules are crystal methanol which has been confirmed by IR studies. The results of thermal analyses also suggest that these complexes have characteristic melting points (see Table I), in agreement with the determined melting point. The decomposition of these complexes starts around 462-468°C and occurs through more than one stage. Heating to about 800°C, the residue weights correspond to values calculated for M₂O₃(M = La, Ce, Nd, Sm, Gd, Dy, Er, Yb and Y). The above results are in agreement with the structure in Figure 1 for these complexes. Thermal analytical data are listed in Table III.

Compound	Methanol loss temp. (°C)	Methanol loss %	Decomposition temp. (°C)	% Weight loss	Residue (800°C)
HL			483		
LaL ₃ ·1.5CH ₃ OH	40-64	5.25 (5.34)	478	17.25 (18.14)	La_2O_3
SmL ₃ ·1.5CH ₃ OH	38-70	5.36 (5.27)	468	18.50 (19.18)	Sm_2O_3
GdL ₃ ·1.5CH ₃ OH	36-62	5.14 (5.23)	462	19.10 (19.78)	Gd_2O_3
DyL ₃ ·1.5CH ₃ OH	39-65	5.45 (5.20)	473	21.13 (20.24)	Dy_2O_3

TABLE III The results of thermal analytical for the ligand and its typical complexes

Calculated values in parentheses

¹H NMR of LaL₃·1.5 CH₃OH

The ¹H NMR spectra of HL and its La (III) complex were studied using d_6 acetone as the solvent and TMS as the internal reference. The ¹H NMR spectrum of HL exhibits: singlet at 11.43 ppm, triplet at 11.15-11.23 ppm, doublet at 4.31-4.35 ppm and multilet at 7.45-7.95 ppm assigned to -C(O)NH-, -NH-CH₂-, -CH₂- and \bigcirc , respectively. The carboxyl proton(-COOH) (HL) was unobserved. When coordinated to the lanthanum ion the δ value of -CH₂- shifted to 4.04 ppm, giving further evidence for coordination of La(III) ion with the carboxyl group of the ligand. The electron withdrawing capacity of La(III) in the complex is less than that of the carboxyl proton in HL. The δ values of other protons shift slightly. There is a new peak at 3.33 ppm ascribed to the CH₃- of the methanols in the complex, in agreement with the IR spectra and thermal analytical studies.

Antioxidative Activity

The antioxidative activity of typical complexes of a lighter rare earth (Sm) and a heavier rare earth (Gd, Yb) were determined. The suppression ratios of the ligand and its typical complexes for O_2^{-1} radicals and lipid peroxidation are summarized in Table IV. The results show that the ligand and its typical complexes possess scavenging effects on superoxide radicals O_2^{-1} . Their inhibiting activity is slightly enhanced at higher concentrations. The reason for scavenging effects on superoxide radicals O_2^{-1} of the compounds may be the

Ligand and complex	Concentration (µmol 1 ⁻¹)	Average suppression ratio for O_2^{-1} (%)	Concentration (µmol 1 ⁻¹)	Average suppression ratio for the lipid peroxidation (%)
	0.30	47.6		
HL	0.60	64.6	0.40	-87.2
	1.20	74.8		
	0.30	70.8		
LaL ₃ ·1.5CH ₃ OH	0.60	71.9	0.10	17.0
	1.20	75.4		
	0.30	69.0		
GdL ₃ ·1.5CH ₃ OH	0.60	69.3	0.10	15.2
	1.20	72.8		
	0.30	73.4		
YbL ₃ ·1.5CH ₃ OH	0.60	75.4	0.10	-23.4
	1.20	77.5		······································

TABLE IV Data of scavenging effect on O_2^{-1} and inhibiting results for lipid peroxidation of the ligand and its typical complexes

presence of the C=S group in the ligand as well as its complexes.¹⁰ The complexes of Sm and Gd have a strong inhibiting action to lipid peroxidation of homogenate of mouse liver, but the ligand and Yb complex accelerate lipid peroxidation of homogenate of mouse liver. Interpretation of the anomalous behavior of the Yb complex is uncertain.

Further studies on the detailed mechanism for the reaction of the complexes with superoxide are in progress.

References

- K. Sakurai, T. Miura and T. Ogiso, Yakugaku Zasshi 106, 1034 (1986); Chem. Abstr. 106, 95942c (1987).
- W.E. Curtis, N.B. Parker, S.L. Linas and J.E. Repine, Superoxide Dismutase Chem. Biol. Med., Proc. Int. Conf. 4th, 111 (1985); Chem. Abstr., 106, 46597k (1987).
- 3. S.K. Shukla, Inorg. Chim. 144, 94 (1983).
- 4. L.J. Anghileri, Arzneimittlel-Forsh 793, 25 (1975).
- 5. D.T. Elmore and P.A. Toseland, J. Chem. Soc. 4533 (1954).
- J.D. Bewleg, Physiological aspects of desiccation tolerance, Ann. Rev. Plant Physiol. 30, 195 (1979)
- 7. C.A. Riely and G. Cohen, Science 183, 208 (1974).
- 8. W.J. Geary, Coord Chem. Rev. 7, 81 (1971).
- L.M. Li, G.F. Zeng, W.D. Zhuang and S.Q. Xi, Acta Chimica Sinica (China) 46, 9 (1988); Chem. Abstr. 108, 176135k (1988).
- 10. J.G. Horsfall and S. Nich, Contrib. Boyle Thompson Inst. 16, 361 (1951).